The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  0  X X^2  0 X^2  X  0  0  1  1  1  0  1
 0  X  0  0  0  0  0  0  0  X X^2+X  X X^2 X^2  X  0 X^2  X X^2+X X^2  X X^2+X  X  0  X  0  X  X X^2  X  X  X X^2+X X^2 X^2 X^2+X
 0  0  X  0  0  0  X X^2+X  X  X  X  0  0  X X^2  X X^2  X X^2+X X^2 X^2+X  0 X^2+X  X X^2 X^2 X^2 X^2 X^2+X  0 X^2  0 X^2  0  X  X
 0  0  0  X  0  X  X  X X^2  0  0 X^2 X^2 X^2 X^2+X X^2+X X^2 X^2+X X^2+X X^2+X  X  X  0 X^2  X  X  0  0  0  0  X  0  X X^2+X  X X^2
 0  0  0  0  X  X X^2 X^2+X X^2+X  0  X  X  0 X^2+X  X X^2  X  X X^2 X^2+X  0  0 X^2  0 X^2 X^2+X X^2 X^2+X  X X^2 X^2+X X^2+X  X  X  X X^2+X
 0  0  0  0  0 X^2 X^2 X^2 X^2 X^2  0  0 X^2  0 X^2  0 X^2  0  0  0 X^2  0 X^2  0  0  0 X^2 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2

generates a code of length 36 over Z2[X]/(X^3) who�s minimum homogenous weight is 29.

Homogenous weight enumerator: w(x)=1x^0+80x^29+134x^30+158x^31+237x^32+308x^33+413x^34+484x^35+483x^36+514x^37+458x^38+276x^39+196x^40+130x^41+70x^42+68x^43+40x^44+22x^45+12x^46+6x^47+2x^48+2x^49+1x^50+1x^52

The gray image is a linear code over GF(2) with n=144, k=12 and d=58.
This code was found by Heurico 1.16 in 16.1 seconds.